Part Number Hot Search : 
OP113 AN6554 05100 FDMC2 0FAIR2 IRHM4054 1N6271 0505X
Product Description
Full Text Search
 

To Download TLV2262MFKB Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? slos185d ? february 1997 ? revised august 2006 1 post office box 655303 ? dallas, texas 75265  output swing includes both supply rails  low noise . . . 19 nv/ hz typ at f = 1 khz  low input bias current ...1 pa typ  fully specified for both single-supply and split-supply operation  very low power ...34 a per channel typ  common-mode input voltage range includes negative rail  low input offset voltage 850 v max at t a = 25 c  wide supply voltage range 2.7 v to 8 v  macromodel included  available in q-temp automotive highrel automotive applications configuration control / print support qualification to automotive standards description the tlv2252 and tlv2254 are dual and quadruple low-voltage operational amplifiers from texas instruments. both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. the tlv225x family consumes only 34 a of supply current per channel. this micropower operation makes them good choices for battery-powered applications. this family is fully characterized at 3 v and 5 v and is optimized for low-voltage applications. the noise performance has been dramatically improved over previous generations of cmos amplifiers. the tlv225x has a noise level of 19 nv/ hz at 1khz, four times lower than competitive micropower solutions. the tlv225x, exhibiting high input impedance and low noise, are excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. because of the micro- power dissipation levels combined with 3-v operation, these devices work well in hand-held monitoring and remote-sensing applications. in addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (adcs). for precision applications, the tlv225xa family is available and has a maximum input offset voltage of 850 v. the tlv2252/4 also make great upgrades to the tlv2322/4 in standard designs. they offer increased output dynamic range, lower noise voltage, and lower input offset voltage. this enhanced feature set allows them to be used in a wider range of applications. for applications that require higher output drive and wider input voltage range, see the tlv2432 and tlv2442 devices. if your design requires single amplifiers, please see the tlv2211/21/31 family. these devices are single rail-to-rail operational amplifiers in the sot-23 package. their small size and low power consumption, make them ideal for high density, battery-powered equipment. copyright ? 1997?2006, t exas instruments incorporated please be aware that an important notice concerning avail ability, standard warranty, and use in critical applications of texas instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. advanced lincmos is a trademark of texas instruments. figure 1 ? high-level output voltage ? v high-level output voltage vs high-level output current a 2 1.5 1 0 0 200 400 2.5 3 600 800 t a = 25 c t a = 85 c 0.5 t a = 125 c v dd = 3 v t a = ? 40 c
? slos185d ? february 1997 ? revised august 2006 2 post office box 655303 ? dallas, texas 75265 tlv2252 available options packaged devices t a v io max at 25 c small outline ? (d) chip carrier (fk) ceramic dip (jg) plastic dip (p) tssop ? (pw) ceramic flatpack (u) ?40 c to 125 c 850 v tlv2252aid ? ? tlv2252aip tlv2252aipwle ? ?40 c to 125 c 850 v 1500 v tlv2252aid tlv2252id ? ? ? ? tlv2252aip tlv2252ip tlv2252aipwle ? ? ? ?40 c to 125 c 850 v tlv2252aqd ? ? ? ? ? ?40 c to 125 c 850 v 1500 v tlv2252aqd tlv2252qd ? ? ? ? ? ? ? ? ? ? ?55 c to 125 c 850 v 1500 v ? ? tlv2252amfk tlv2252mfk tlv2252amjg tlv2252mjg ? ? ? ? tlv2252amu tlv2252mu ? the d packages are available taped and reeled. add r suffix to device type (e.g., tlv2252cdr). ? the pw package is available only left-end taped and reeled. chips are tested at 25 c. tlv2254 available options packaged devices t a v io max at 25 c small outline ? (d) chip carrier (fk) ceramic dip (j) plastic dip (n) tssop ? (pw) ceramic flatpack (w) ?40 c to 125 c 850 v tlv2254aid ? ? tlv2254ain tlv2254aipwle ? ?40 c to 125 c 850 v 1500 v tlv2254aid tlv2254id ? ? ? ? tlv2254ain tlv2254in tlv2254aipwle ? ? ? ?40 c to 125 c 850 v tlv2254aqd ? ? ? ? ? ?40 c to 125 c 850 v 1500 v tlv2254aqd tlv2254qd ? ? ? ? ? ? ? ? ? ? ?55 c to 125 c 850 v 1500 v ? ? tlv2254amfk tlv2254mfk tlv2254amj tlv2254mj ? ? ? ? tlv2254amw tlv2254mw ? the d packages are available taped and reeled. add r suffix to device type (e.g., tlv2254cdr). ? the pw package is available only left-end taped and reeled. chips are tested at 25 c.
? slos185d ? february 1997 ? revised august 2006 3 post office box 655303 ? dallas, texas 75265 tlv2252m, tlv2252am . . . jg package (top view) tlv2252i, tlv2252ai tlv2252q, tlv2252aq d, p, or pw package (top view) 1 2 3 4 8 7 6 5 1out 1in ? 1in + v dd ? /gnd v dd + 2out 2in ? 2in + nc v cc + 2out 2in ? 2in + nc 1out 1in ? 1in + v cc ? /gnd 1 2 3 4 5 10 9 8 7 6 tlv2252m, tlv2252am ...u p ackage (top view) 1 2 3 4 8 7 6 5 1out 1in ? 1in + v dd ? /gnd v dd + 2out 2in ? 2in + 3 2 1 20 19 910111213 4 5 6 7 8 18 17 16 15 14 nc 2out nc 2in ? nc nc 1in ? nc 1in + nc nc 1out nc 2in+ nc nc nc nc v dd+ v dd? /gnd 1 2 3 4 5 6 7 14 13 12 11 10 9 8 1out 1in ? 1in + v dd + 2in + 2in ? 2out 4out 4in ? 4in + v dd ? / gnd 3in + 3in ? 3out tlv2254i, tlv2254ai, tlv2254q, tlv2254aq ...d or n p ackag e tlv2254m, tlv2254am ...j or w p ackage (top view) tlv2254i, tlv2254ai . . . pw package (top view) 1 14 8 7 4out 4in ? 4in + v dd ? / gnd 3in + 3in ? 3out 1out 1in ? 1in + v dd+ 2in + 2in ? 2out 3212019 910111213 4 5 6 7 8 18 17 16 15 14 4in+ nc v dd ? / gnd nc 3in+ 1in+ nc v dd+ nc 2in+ 1in ? 1out nc 3out 3in ? 4in ? 2in ? nc 4out 2out tlv2252m, tlv2252am . . . fk package (top view) tlv2254m, tlv2254am . . . fk package (top view)
template release date: 7?11?94 slos185d ? february 1997 ? revised august 2006 ? 4 post office box 655303 dallas, texas 75265 ? equivalent schematic (each amplifier) q3 q6 q9 q12 q14 q16 q2 q5 q7 q8 q10 q11 d1 q17 q15 q13 q4 q1 r5 c1 v dd + in + in ? r3 r4 r1 r2 out v dd ?/ gnd r6 actual device component count ? component tlv2252 tlv2254 transistors 38 76 resistors 30 56 diodes 9 18 capacitors 3 6 ? includes both amplifiers and all esd, bias, and trim circuitry
? slos185d ? february 1997 ? revised august 2006 5 post office box 655303 ? dallas, texas 75265 absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ? supply voltage, v dd (see note 1) 16 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . differential input voltage, v id (see note 2) v dd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . input voltage range, v i (any input, see note 1) v dd ? ?0.3 v to v dd+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . input current, i i (each input) 5 ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . output current, i o 50 ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . total current into v dd + 50 ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . total current out of v dd ? 50 ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . duration of short-circuit current (at or below) 25 c (see note 3) unlimited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . continuous total power dissipation see dissipation rating table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . operating free-air temperature range, t a : i suffix ?40 c to 125 c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . q suffix ?40 c to 125 c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m suffix ?55 c to 125 c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . storage temperature range, t stg ?65 c to 150 c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: d, n, p, and pw packages 260 c . . . . . . . j, jg, u, and w packages 300 c . . . . . . . ? stresses beyond those listed under ?absolute maximum ratings? may cause permanent damage to the device. these are stress ratings only, a nd functional operation of the device at these or any other conditions beyond those indicated under ?recommended operating conditi ons? is not implied. exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. notes: 1. all voltage values, except differential voltages, are with respect to v dd ? . 2. differential voltages are at the noninverting input with respect to the inverting input. excessive current flows when input i s brought below v dd ? ? 0.3 v. 3. the output may be shorted to either supply. temperature and /or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. dissipation rating table package t a 25 c derating factor t a = 85 c t a = 125 c package t a 25 c power rating derating factor above t a = 25 c t a = 85 c power rating t a = 125 c power rating d?8 725 mw 5.8 mw/ c 377 mw 145 mw d?14 950 mw 7.6 mw/ c 494 mw 190 mw fk 1375 mw 11.0 mw/ c 715 mw 275 mw j 1375 mw 11.0 mw/ c 715 mw 275 mw jg 1050 mw 8.4 mw/ c 546 mw 210 mw n 1150 mw 9.2 mw/ c 598 mw 230 mw p 1000 mw 8.0 mw/ c 520 mw 200 mw pw?8 525 mw 4.2 mw/ c 273 mw 105 mw pw?14 700 mw 5.6 mw/ c 364 mw 140 mw u 700 mw 5.5 mw/ c 370 mw 150 mw w 700 mw 5.5 mw/ c 370 mw 150 mw recommended operating conditions tlv225xi tlv225xq tlv225xm unit min max min max min max unit supply voltage, v dd 2.7 8 2.7 8 2.7 8 v input voltage range, v i v dd ? v dd + ? 1.3 v dd ? v dd + ? 1.3 v dd ? v dd + ? 1.3 v common-mode input voltage, v ic v dd ? v dd + ? 1.3 v dd ? v dd + ? 1.3 v dd ? v dd + ? 1.3 v operating free-air temperature, t a ?40 125 ?40 125 ?55 125 c note 1: all voltage values, except differential voltages, are with respect to v dd ? .
? slos185d ? february 1997 ? revised august 2006 6 post office box 655303 ? dallas, texas 75265 tlv2252i electrical characteristics at specified free-air temperature, v dd = 3 v (unless otherwise noted) parameter test conditions t a ? tlv2252i tlv2252ai unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 200 1500 200 850 v v io input offset voltage full range 1750 1000 v  vio temperature coefficient 25 c 0.5 0.5 v/ c  vio temperature coefficient of input offset voltage 25 c to 85 c 0.5 0.5 v/ c input offset voltage long-term drift (see note 4) v dd = 1.5 v, v = 0, 25 c 0.003 0.003 v/mo v dd = 1.5 v , v o = 0, v ic = 0, r s = 50 ? c 0.5 60 0.5 60 i io input offset current v o = 0, ic r s = 50 ? ?40 c to 85 c 150 150 pa full range 1000 1000 25 c 1 60 1 60 i ib input bias current ?40 c to 85 c 150 150 pa full range 1000 1000 0 ?0.3 0 ?0.3 25 c 0 to ?0.3 to 0 to ?0.3 to v icr common-mode input voltage range r s = 50 ? | v io | 5 mv 25 c to 2 to 2.2 to 2 to 2.2 v v icr common-mode input voltage range r s = 50 ?, | v io | 5 mv 0 0 v voltage range full range 0 to 0 to full range to 1.7 to 1.7 i oh = ? 20 a 25 c 2.98 2.98 v oh high-level output voltage i oh = ? 75 a 25 c 2.9 2.9 v v oh high-level output voltage i oh = ? 75 a full range 2.8 2.8 v voltage i oh = ? 150 a 25 c 2.8 2.8 v ic = 1.5 v, i ol = 50 a 25 c 10 10 v ic = 1.5 v, i ol = 50 a full range 80 80 v ol low-level output voltage v ic = 1.5 v, i ol = 500 a 25 c 100 100 mv v ol low-level output voltage v ic = 1.5 v, i ol = 500 a full range 150 150 mv voltage v ic = 1.5 v, i ol = 1 a 25 c 200 200 v ic = 1.5 v, i ol = 1 a full range 300 300 large-signal differential v ic = 1.5 v, r l = 100 k ? ? 25 c 100 250 100 250 a vd large-signal differentia l voltage amplification v ic = 1.5 v, v o = 1 v to 2 v r l = 100 k ? ? full range 10 10 v/mv a vd voltage amplification v o = 1 v to 2 v r l = 1 m ? ? 25 c 800 800 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, p package 25 c 8 8 pf z o closed-loop output impedance f = 25 khz, a v = 10 25 c 220 220 ? cmrr common-mode rejection ratio v ic = 0 to 1.7 v, 25 c 65 75 65 77 db cmrr common-mode rejection ratio v ic = 0 to 1.7 v, v o = 1.5 v, r s = 50 ? full range 60 60 db ? full range is ? 40 c to 125 c. ? referenced to 1.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos185d ? february 1997 ? revised august 2006 7 post office box 655303 ? dallas, texas 75265 tlv2252i electrical characteristics at specified free-air temperature, v dd = 3 v (unless otherwise noted) (continued) parameter test conditions t a ? tlv2252i tlv2252ai unit parameter test conditions t a ? min typ max min typ max unit k svr supply voltage rejection ratio v dd = 2.7 v to 8 v, v = v /2, no load 25 c 80 95 80 100 db k svr rejection ratio ( ? v dd / ? v io ) v dd = 2.7 v to 8 v, v ic = v dd /2, no load full range 80 80 db i dd supply current v o = 1.5 v, no load 25 c 68 125 68 125 a i dd supply current v o = 1.5 v, no load full range 150 150 a ? full range is ? 40 c to 125 c. tlv2252i operating characteristics at specified free-air temperature, v dd = 3 v parameter test conditions t a ? tlv2252i tlv2252ai unit parameter test conditions t a ? min typ max min typ max unit v = 1.1 v to 1.9 v, 25 c 0.07 0.1 0.07 0.1 v o = 1.1 v to 1.9 v, r = 100 k ? , 25 c 0.07 0.1 0.07 0.1 sr slew rate at unity gain v o = 1.1 v to 1.9 v, r l = 100 k ? ? , c l = 100 pf ? full 0.05 0.05 v/ s sr slew rate at unity gain r l = 100 k , c l = 100 pf ? full range 0.05 0.05 v/ s v n equivalent input noise f = 10 hz 25 c 35 35 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 19 19 nv/ hz v n(pp) peak-to-peak equivalent input noise f = 0.1 hz to 1 hz 25 c 0.6 0.6 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.1 1.1 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz gain-bandwidth product f = 1 khz, ? r l = 50 k ? ? , 25 c 0.187 0.187 mhz gain-bandwidth produc t f = 1 khz, c l = 100 pf ? r l = 50 k ? ? , 25 c 0.187 0.187 mhz b om maximum output-swing v o(pp) = 1 v, ? a v = 1, ? 25 c 60 60 khz b om maximum output-swing bandwidth v o(pp) = 1 v, r l = 50 k ? ? , a v = 1, c l = 100 pf ? 25 c 60 60 khz m phase margin at unity gain r l = 50 k ? ? , c l = 100 pf ? 25 c 63 63 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 15 15 db ? full range is ? 40 c to 125 c. ? referenced to 1.5 v
? slos185d ? february 1997 ? revised august 2006 8 post office box 655303 ? dallas, texas 75265 tlv2252i electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) parameter test conditions t a ? tlv2252i tlv2252ai unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 200 1500 200 850 v v io input offset voltage full range 1750 1000 v  vio temperature coefficient 25 c 0.5 0.5 v/ c  vio temperature coefficient of input offset voltage 25 c to 85 c 0.5 0.5 v/ c input offset voltage long- term drift (see note 4) 25 c 0.003 0.003 v/mo v dd = 2.5 v, v ic = 0, 25 c 0.5 60 0.5 60 i io input offset current v dd = 2.5 v, v o = 0, v ic = 0, r s = 50 ? ?40 c to 85 c 150 150 pa full range 1000 1000 25 c 1 60 1 60 i ib input bias current ?40 c to 85 c 150 150 pa full range 1000 1000 v icr common-mode input | v io | 5 mv, r s = 50 ? c 0 to 4 ?0.3 to 4.2 0 to 4 ?0.3 to 4.2 v v icr common-mode input voltage range | v io | 5 mv, r s = 50 ? full range 0 to 3.5 0 to 3.5 v i oh = ? 20 a 25 c 4.98 4.98 v oh high-level output voltage i oh = ? 75 a 25 c 4.9 4.94 4.9 4.94 v v oh high-level output voltage i oh = ? 75 a full range 4.8 4.8 v i oh = ? 150 a 25 c 4.8 4.88 4.8 4.88 v ic = 2.5 v, i ol = 50 a 25 c 0.01 0.01 v ic = 2.5 v, i ol = 50 a full range 0.06 0.06 v ol low-level output voltage v ic = 2.5 v, i ol = 500 a 25 c 0.09 0.15 0.09 0.15 v v ol low-level output voltage v ic = 2.5 v, i ol = 500 a full range 0.15 0.15 v v ic = 2.5 v, i ol = 1 a 25 c 0.2 0.3 0.2 0.3 v ic = 2.5 v, i ol = 1 a full range 0.3 0.3 large-signal differential v ic = 2.5 v, r l = 100 k ? ? 25 c 100 350 100 350 a vd large-signal differential voltage amplification v ic = 2.5 v, v o = 1 v to 4 v r l = 100 k ? ? full range 10 10 v/mv a vd voltage amplification v o = 1 v to 4 v r l = 1 m ? ? 25 c 1700 1700 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, p package 25 c 8 8 pf z o closed-loop output impedance f = 25 khz, a v = 10 25 c 200 200 ? cmrr common-mode rejection ratio v ic = 0 to 2.7 v, v o = 2.5 v, 25 c 70 83 70 83 db cmrr common-mode rejection ratio v ic = 0 to 2.7 v, r s = 50 ? v o = 2.5 v, full range 70 70 db ? full range is ? 40 c to 125 c. ? referenced to 2.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos185d ? february 1997 ? revised august 2006 9 post office box 655303 ? dallas, texas 75265 tlv2252i electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) (continued) parameter test conditions t a ? tlv2252i tlv2252ai unit parameter test conditions t a ? min typ max min typ max unit k svr supply voltage rejection v dd = 4.4 v to 8 v, 25 c 80 95 80 95 db k svr supply voltage rejection ratio ( ? v dd / ? v io ) v dd = 4.4 v to 8 v, v ic = v dd /2, no load full range 80 80 db i dd supply current v o = 2.5 v, no load 25 c 70 125 70 125 a i dd supply current v o = 2.5 v, no load full range 150 150 a ? full range is ? 40 c to 125 c. tlv2252i operating characteristics at specified free-air temperature, v dd = 5 v parameter test conditions t a ? tlv2252i tlv2252ai unit parameter test conditions t a ? min typ max min typ max unit 25 c 0.07 0.12 0.07 0.12 v o = 1.5 v to 3.5 v, r l = 100 k ? ? , 25 c 0.07 0.12 0.07 0.12 sr slew rate at unity gain v o = 1.5 v to 3.5 v , c l = 100 pf ? r l = 100 k ? ? , full 0.05 0.05 v/ s sr slew rate at unity gain c l = 100 pf ? full range 0.05 0.05 v/ s v n equivalent input noise f = 10 hz 25 c 36 36 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 19 19 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.7 0.7 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.1 1.1 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz thd + n total harmonic v o = 0.5 v to 2.5 v , f = 20 khz, a v = 1 25 c 0.2% 0.2% thd + n total harmonic distortion plus noise o f = 20 khz, r l = 50 k ? ? a v = 10 25 c 1% 1% gain-bandwidth f = 50 khz, r l = 50 k ? ? , 25 c 0.2 0.2 mhz gain-bandwidth product f = 50 khz, c l = 100 pf ? r l = 50 k ? ? , 25 c 0.2 0.2 mhz b om maximum output-swing v o(pp) = 2 v, ?, a v = 1, ? 25 c 30 30 khz b om maximum output-swing bandwidth v o(pp) = 2 v, r l = 50 k ? ?, a v = 1, c l = 100 pf ? 25 c 30 30 khz m phase margin at unity gain r l = 50 k ? ? , c l = 100 pf ? 25 c 63 63 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 15 15 db ? full range is ? 40 c to 125 c. ? referenced to 2.5 v
? slos185d ? february 1997 ? revised august 2006 10 post office box 655303 ? dallas, texas 75265 tlv2254i electrical characteristics at specified free-air temperature, v dd = 3 v (unless otherwise noted) parameter test conditions t a ? tlv2254i tlv2254ai unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 200 1500 200 850 v v io input offset voltage full range 1750 1000 v  vio temperature coefficient of input 25 c 0.5 0.5 v/ c  vio coefficient of input offset voltage 25 c to 85 c 0.5 0.5 v/ c input offset voltage long-term drift (see note 4) v dd = 1.5 v, v ic = 0, 25 c 0.003 0.003 v/mo v dd = 1.5 v, v o = 0, v ic = 0, r s = 50 ? 25 c 0.5 60 0.5 60 i io input offset current v o = 0, r s = 50 ? c to 85 c 150 150 pa full range 1000 1000 25 c 1 60 1 60 i ib input bias current ?40 c to 85 c 150 150 pa full range 1000 1000 25 c 0 ?0.3 0 ?0.3 v icr common-mode input r s = 50 ?, | v io | 5 mv 25 c 0 to 2 ?0.3 to 2.2 0 to 2 ?0.3 to 2.2 v v icr common-mode input voltage range r s = 50 ? , | v io | 5 mv full range 0 0 v voltage range full range 0 to 1.7 0 to 1.7 i oh = ? 20 a 25 c 2.98 2.98 v oh high-level output i oh = ? 75 a 25 c 2.9 2.9 v v oh high-level output voltage i oh = ? 75 a full range 2.8 2.8 v voltage i oh = ? 150 a 25 c 2.8 2.8 v ic = 1.5 v, i ol = 50 a 25 c 10 10 v ic = 1.5 v, i ol = 50 a full range 80 80 v ol low-level output v ic = 1.5 v, i ol = 500 a 25 c 100 100 mv v ol low-level output voltage v ic = 1.5 v, i ol = 500 a full range 150 150 mv voltage v ic = 1.5 v, i ol = 1 a 25 c 200 200 v ic = 1.5 v, i ol = 1 a full range 300 300 large-signal v ic = 1.5 v, r l = 100 k ? ? 25 c 100 225 100 225 a vd large-signal differential voltage v ic = 1.5 v, v o = 1 v to 2 v r l = 100 k ? ? full range 10 10 v/mv a vd differential voltage amplification v o = 1 v to 2 v r l = 1 m ? ? 25 c 800 800 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, n package 25 c 8 8 pf z o closed-loop output impedance f = 25 khz, a v = 10 25 c 220 220 ? cmrr common-mode v ic = 0 to 1.7 v , v o = 1.5 v, 25 c 65 75 65 77 db cmrr common-mode rejection ratio v ic = 0 to 1.7 v, r s = 50 ? v o = 1.5 v, full range 60 60 db ? full range is ? 40 c to 125 c. ? referenced to 1.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos185d ? february 1997 ? revised august 2006 11 post office box 655303 ? dallas, texas 75265 tlv2254i electrical characteristics at specified free-air temperature, v dd = 3 v (unless otherwise noted) (continued) parameter test conditions t a ? tlv2254i tlv2254ai unit parameter test conditions t a ? min typ max min typ max unit k svr supply voltage rejection ratio v dd = 2.7 v to 8 v, 25 c 80 95 80 100 db k svr rejection ratio ( ? v dd / ? v io ) v dd = 2.7 v to 8 v, v ic = v dd /2, no load full range 80 80 db i dd supply current v o = 1.5 v, no load 25 c 135 250 135 250 a i dd supply current (four amplifiers) v o = 1.5 v, no load full range 300 300 a ? full range is ? 40 c to 125 c. tlv2254i operating characteristics at specified free-air temperature, v dd = 3 v parameter test conditions t a ? tlv2254i tlv2254ai unit parameter test conditions t a ? min typ max min typ max unit v o = 0.7 v to 1.7 v, 25 c 0.07 0.1 0.07 0.1 sr slew rate at unity gain v o = 0.7 v to 1.7 v, r l = 100 k ? ? , 25 c 0.07 0.1 0.07 0.1 v/ s sr slew rate at unity gain o r l = 100 k ? ? , c = 100 pf ? full range 0.05 0.05 v/ s sr slew rate at unity gain r l = 100 k , c l = 100 pf ? full range 0.05 0.05 v/ s v n equivalent input noise voltage f = 10 hz 25 c 35 35 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 19 19 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.6 0.6 v v n(pp) peak-to-peak equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.1 1.1 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz gain-bandwidth product f = 1 khz, r l = 50 k ? ? , 25 c 0.187 0.187 mhz gain-bandwidth product r l = 50 k ? ? , c l = 100 pf ? 25 c 0.187 0.187 mhz b om maximum output-swing v o(pp) = 1 v, a v = 1, ? 25 c 60 60 khz b om maximum output-swing bandwidth a v = 1, r l = 50 k ? ? , c l = 100 pf ? 25 c 60 60 khz m phase margin at unity gain r l = 50 k ? ? , ? 25 c 63 63 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 15 15 db ? full range is ? 40 c to 85 c. ? referenced to 1.5 v
? slos185d ? february 1997 ? revised august 2006 12 post office box 655303 ? dallas, texas 75265 tlv2254i electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) parameter test conditions t a ? tlv2254i tlv2254ai unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 200 1500 200 850 v v io input offset voltage full range 1750 1000 v  vio temperature coefficient of input 25 c 0.5 0.5 v/ c  vio coefficient of input offset voltage 25 c to 85 c 0.5 0.5 v/ c input offset voltage long-term drift (see note 4) v dd = 2.5 v, v ic = 0, 25 c 0.003 0.003 v/mo v dd = 2.5 v, v o = 0, v ic = 0, r s = 50 ? 25 c 0.5 60 0.5 60 i io input offset current v o = 0, r s = 50 ? c to 85 c 150 150 pa full range 1000 1000 25 c 1 60 1 60 i ib input bias current ?40 c to 85 c 150 150 pa full range 1000 1000 25 c 0 ?0.3 0 ?0.3 v icr common-mode input | v io | 5 mv, r s = 50 ? c 0 to 4 ?0.3 to 4.2 0 to 4 ?0.3 to 4.2 v v icr common-mode input voltage range | v io | 5 mv, r s = 50 ? full range 0 0 v voltage range full range 0 to 3.5 0 to 3.5 i oh = ? 20 a 25 c 4.98 4.98 v oh high-level output i oh = ? 75 a 25 c 4.9 4.94 4.9 4.94 v v oh high-level output voltage i oh = ? 75 a full range 4.8 4.8 v voltage i oh = ? 150 a 25 c 4.8 4.88 4.8 4.88 v ic = 2.5 v, i ol = 50 a 25 c 0.01 0.01 v ic = 2.5 v, i ol = 50 a full range 0.06 0.06 v ol low-level output v ic = 2.5 v, i ol = 500 a 25 c 0.09 0.15 0.09 0.15 v v ol low-level output voltage v ic = 2.5 v, i ol = 500 a full range 0.15 0.15 v voltage v ic = 2.5 v, i ol = 1 a 25 c 0.2 0.3 0.2 0.3 v ic = 2.5 v, i ol = 1 a full range 0.3 0.3 large-signal v ic = 2.5 v, r l = 100 k ? ? 25 c 100 350 100 350 a vd large-signal differential voltage v ic = 2.5 v, v o = 1 v to 4 v r l = 100 k ? ? full range 10 10 v/mv a vd differential voltage amplification v o = 1 v to 4 v r l = 1 m ? ? 25 c 1700 1700 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, n package 25 c 8 8 pf z o closed-loop output impedance f = 25 khz, a v = 10 25 c 200 200 ? cmrr common-mode v ic = 0 to 2.7 v, v o = 2.5 v, 25 c 70 83 70 83 db cmrr common-mode rejection ratio v ic = 0 to 2.7 v, r s = 50 ? v o = 2.5 v, full range 70 70 db ? full range is ? 40 c to 125 c. ? referenced to 2.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos185d ? february 1997 ? revised august 2006 13 post office box 655303 ? dallas, texas 75265 tlv2254i electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) (continued) parameter test conditions t a ? tlv2254i tlv2254ai unit parameter test conditions t a ? min typ max min typ max unit k svr supply voltage rejection ratio v dd = 4.4 v to 8 v, 25 c 80 95 80 95 db k svr rejection ratio ( ? v dd / ? v io ) v dd = 4.4 v to 8 v, v ic = v dd /2, no load full range 80 80 db i dd supply current v o = 2.5 v, no load 25 c 140 250 140 250 a i dd supply current (four amplifiers) v o = 2.5 v, no load full range 300 300 a ? full range is ? 40 c to 125 c. tlv2254i operating characteristics at specified free-air temperature, v dd = 5 v parameter test conditions t a ? tlv2254i tlv2254ai unit parameter test conditions t a ? min typ max min typ max unit slew rate at unity v o = 1.4 v to 2.6 v, r l = 100 k ? ? , 25 c 0.07 0.12 0.07 0.12 sr slew rate at unity gain v o = 1.4 v to 2.6 v, c l = 100 pf ? r l = 100 k ? ? , full range 0.05 0.05 v/ s v n equivalent input f = 10 hz 25 c 36 36 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 19 19 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.7 0.7 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.1 1.1 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz thd + n total harmonic distortion plus v o = 0.5 v to 2.5 v, f = 20 khz, a v = 1 25 c 0.2% 0.2% thd + n distortion plus noise o f = 20 khz, r l = 50 k ? ? a v = 10 25 c 1% 1% gain-bandwidth f = 50 khz, r l = 50 k ? ? , 25 c 0.2 0.2 mhz gain-bandwidth product f = 50 khz, c l = 100 pf ? r l = 50 k ? ? , 25 c 0.2 0.2 mhz b om maximum output- v o(pp) = 2 v, ? a v = 1, ? 25 c 30 30 khz b om maximum output- swing bandwidth v o(pp) = 2 v, r l = 50 k ? ? , a v = 1, c l = 100 pf ? 25 c 30 30 khz m phase margin at unity gain r l = 50 k ? ? , c l = 100 pf ? 25 c 63 63 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 15 15 db ? full range is ? 40 c to 125 c. ? referenced to 2.5 v
? slos185d ? february 1997 ? revised august 2006 14 post office box 655303 ? dallas, texas 75265 tlv2252q, and tlv2252m electrical characteristics at specified free-air temperature, v dd = 3 v (unless otherwise noted) parameter test conditions t a ? tlv2252q, tlv2252m tlv2252aq, tlv2252am unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 200 1500 200 850 v v io input offset voltage full range 1750 1000 v  vio temperature coefficient 25 c 0.5 0.5 v/ c  vio temperature coefficient of input offset voltage 25 c to 85 c 0.5 0.5 v/ c input offset voltage long-term drift (see note 4) v dd = 1.5 v , v o = 0, v ic = 0, r s = 50 ? 25 c 0.003 0.003 v/mo i io input offset current 25 c 0.5 60 0.5 60 pa i io input offset current 125 c 1000 1000 pa i ib input bias current 25 c 1 60 1 60 pa i ib input bias current 125 c 1000 1000 pa 0 ?0.3 0 ?0.3 25 c 0 to ?0.3 to 0 to ?0.3 to v icr common-mode input voltage range r s = 50 ? | v io | 5 mv 25 c to 2 to 2.2 to 2 to 2.2 v v icr common-mode input voltage range r s = 50 ?, | v io | 5 mv 0 0 v voltage range full range 0 to 0 to full range to 1.7 to 1.7 i oh = ? 20 a 25 c 2.98 2.98 v oh high-level output voltage i oh = ? 75 a 25 c 2.9 2.9 v v oh high-level output voltage i oh = ? 75 a full range 2.8 2.8 v voltage i oh = ? 150 a 25 c 2.8 2.8 v ic = 1.5 v, i ol = 50 a 25 c 10 10 low-level output v ic = 1.5 v, i ol = 500 a 25 c 100 150 100 150 v ol low-level output voltage v ic = 1.5 v, i ol = 500 a full range 165 165 mv v ol voltage v ic = 1.5 v, i ol = 1 a 25 c 200 300 200 300 mv v ic = 1.5 v, i ol = 1 a full range 300 300 large-signal differential v ic = 1.5 v, r l = 100 k ? ? 25 c 100 250 100 250 a vd large-signal differential voltage amplification v ic = 1.5 v, v o = 1 v to 2 v r l = 100 k ? ? full range 10 10 v/mv a vd voltage amplification v o = 1 v to 2 v r l = 1 m ? ? 25 c 800 800 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, p package 25 c 8 8 pf z o closed-loop output impedance f = 25 khz, a v = 10 25 c 220 220 ? cmrr common-mode rejection ratio v ic = 0 to 1.7 v, v o = 1.5 v, 25 c 65 75 65 77 db cmrr common-mode rejection ratio v ic = 0 to 1.7 v, r s = 50 ? v o = 1.5 v, full range 60 60 db k svr supply voltage rejection ratio ( v / v) v dd = 2.7 v to 8 v, v = v /2, no load 25 c 80 95 80 100 db k svr supply voltage rejection ratio ( ? v dd / ? v io ) v dd = 2.7 v to 8 v, v ic = v dd /2, no load full range 80 80 db i dd supply current v o = 1.5 v, no load 25 c 68 125 68 125 a i dd supply current v o = 1.5 v, no load full range 150 150 a ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 1.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos185d ? february 1997 ? revised august 2006 15 post office box 655303 ? dallas, texas 75265 tlv2252q, and tlv2252m operating characteristics at specified free-air temperature, v dd = 3 v parameter test conditions t a ? tlv2252q, tlv2252m tlv2252aq, tlv2252am unit parameter test conditions t a ? min typ max min typ max unit 25 c 0.07 0.1 0.07 0.1 v o = 0.8 v to 1.4 v, r l = 100 k ? ? , 25 c 0.07 0.1 0.07 0.1 sr slew rate at unity gain v o = 0.8 v to 1.4 v , c l = 100 pf ? r l = 100 k ? ? , full 0.05 0.05 v/ s sr slew rate at unity gain c l = 100 pf ? full range 0.05 0.05 v/ s v n equivalent input noise f = 10 hz 25 c 35 35 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 19 19 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.6 0.6 v v n(pp ) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.1 1.1 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz gain-bandwidth f = 1 khz, ? r l = 50 k ? ? , 25 c 0.187 0.187 mhz gain-bandwidth product f = 1 khz, c l = 100 pf ? r l = 50 k ? ? , 25 c 0.187 0.187 mhz b om maximum output-swing v o(pp) = 1 v, ? a v = 1, ? 25 c 60 60 khz b om output-swing bandwidth v o(pp) = 1 v, r l = 50 k ? ? , a v = 1, c l = 100 pf ? 25 c 60 60 khz m phase margin at unity gain r l = 50 k ? ? , c l = 100 pf ? 25 c 63 63 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 15 15 db ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 1.5 v
? slos185d ? february 1997 ? revised august 2006 16 post office box 655303 ? dallas, texas 75265 tlv2252q, and tlv2252m electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) parameter test conditions t a ? tlv2252q, tlv2252m tlv2252aq, tlv2252am unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 200 1500 200 850 v v io input offset voltage full range 1750 1000 v  vio temperature coefficient 25 c 0.5 0.5 v/ c  vio temperature coefficient of input offset voltage 25 c to 85 c 0.5 0.5 v/ c input offset voltage long- term drift (see note 4) v dd = 2.5 v , v o = 0, v ic = 0, r s = 50 ? 25 c 0.003 0.003 v/mo i io input offset current v o = 0, r s = 50 ? c 0.5 60 0.5 60 pa i io input offset current 125 c 1000 1000 pa i ib input bias current 25 c 1 60 1 60 pa i ib input bias current 125 c 1000 1000 pa v icr common-mode input | v io | 5 mv, r s = 50 ? c 0 to 4 ?0.3 to 4.2 0 to 4 ?0.3 to 4.2 v v icr common-mode input voltage range | v io | 5 mv, r s = 50 ? full range 0 to 3.5 0 to 3.5 v i oh = ? 20 a 25 c 4.98 4.98 v oh high-level output voltage i oh = ? 75 a 25 c 4.9 4.94 4.9 4.94 v v oh high-level output voltage i oh = ? 75 a full range 4.8 4.8 v i oh = ? 150 a 25 c 4.8 4.88 4.8 4.88 v ic = 2.5 v, i ol = 50 a 25 c 0.01 0.01 v ic = 2.5 v, i ol = 500 a 25 c 0.09 0.15 0.09 0.15 v ol low-level output voltage v ic = 2.5 v, i ol = 500 a full range 0.15 0.15 v v ol low-level output voltage v ic = 2.5 v, i ol = 1 a 25 c 0.2 0.3 0.2 0.3 v v ic = 2.5 v, i ol = 1 a full range 0.3 0.3 large-signal differential v ic = 2.5 v, r l = 100 k ? ? 25 c 100 350 100 350 a vd large-signal differential voltage amplification v ic = 2.5 v, v o = 1 v to 4 v r l = 100 k ? ? full range 10 10 v/mv a vd voltage amplification v o = 1 v to 4 v r l = 1 m ? ? 25 c 1700 1700 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, p package 25 c 8 8 pf z o closed-loop output impedance f = 25 khz, a v = 10 25 c 200 200 ? cmrr common-mode rejection v ic = 0 to 2.7 v, 25 c 70 83 70 83 db cmrr common-mode rejection ratio v ic = 0 to 2.7 v, v o = 2.5 v, r s = 50 ? full range 70 70 db k svr supply voltage rejection v dd = 4.4 v to 8 v, 25 c 80 95 80 95 db k svr supply voltage rejection ratio ( ? v dd / ? v io ) v dd = 4.4 v to 8 v, v ic = v dd /2, no load full range 80 80 db ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 2.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos185d ? february 1997 ? revised august 2006 17 post office box 655303 ? dallas, texas 75265 tlv2252q, and tlv2252m electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) (continued) parameter test conditions t a ? tlv2252q, tlv2252m tlv2252aq, tlv2252am unit parameter test conditions t a ? min typ max min typ max unit i dd supply current v o = 2.5 v, no load 25 c 70 125 70 125 a i dd supply current v o = 2.5 v, no load full range 150 150 a ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. tlv2252q, and tlv2252m operating characteristics at specified free-air temperature, v dd = 5 v parameter test conditions t a ? tlv2252q, tlv2252m tlv2252aq, tlv2252am unit parameter test conditions t a ? min typ max min typ max unit v = 1.25 v to 2.75 v, 25 c 0.07 0.12 0.07 0.12 v o = 1.25 v to 2.75 v, ? 25 c 0.07 0.12 0.07 0.12 sr slew rate at unity gain v o = 1.25 v to 2.75 v, r l = 100 k ? ? , c = 100 pf ? full 0.05 0.05 v/ s sr slew rate at unity gain r l = 100 k , c l = 100 pf ? full range 0.05 0.05 v/ s v n equivalent input noise f = 10 hz 25 c 36 36 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 19 19 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.7 0.7 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.1 1.1 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz thd + n total harmonic v o = 0.5 v to 2.5 v , f = 20 khz, a v = 1 25 c 0.2% 0.2% thd + n total harmonic distortion plus noise o f = 20 khz, r l = 50 k ? ? a v = 10 25 c 1% 1% gain-bandwidth product f = 50 khz, r l = 50 k ? ? , 25 c 0.2 0.2 mhz gain-bandwidth produc t f = 50 khz, c l = 100 pf ? r l = 50 k ? ? , 25 c 0.2 0.2 mhz b om maximum output-swing v o(pp) = 2 v, ? a v = 1, ? 25 c 30 30 khz b om maximum output-swing bandwidth v o(pp) = 2 v, r l = 50 k ? ? , a v = 1, c l = 100 pf ? 25 c 30 30 khz m phase margin at unity gain r l = 50 k ? ? , c l = 100 pf ? 25 c 63 63 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 15 15 db ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 2.5 v
? slos185d ? february 1997 ? revised august 2006 18 post office box 655303 ? dallas, texas 75265 tlv2254q, and tlv2254m electrical characteristics at specified free-air temperature, v dd = 3 v (unless otherwise noted) parameter test conditions t a ? tlv2254q, tlv2254m tlv2254aq, tlv2254am unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 200 1500 200 850 v v io input offset voltage full range 1750 1000 v  vio temperature coefficient 25 c 0.5 0.5 v/ c  vio temperature coefficient of input offset voltage 25 c to 125 c 0.5 0.5 v/ c input offset voltage long- term drift (see note 4) v dd = 1.5 v , v o = 0, v ic = 0, r s = 50 ? 25 c 0.003 0.003 v/mo i io input offset current 25 c 0.5 60 0.5 60 pa i io input offset current 125 c 1000 1000 pa i ib input bias current 25 c 1 60 1 60 pa i ib input bias current 125 c 1000 1000 pa 0 ?0.3 0 ?0.3 25 c 0 to ?0.3 to 0 to ?0.3 to v icr common-mode input r s = 50 ? | v io | 5 mv 25 c to 2 to 2.2 to 2 to 2.2 v v icr common-mode input voltage range r s = 50 ?, | v io | 5 mv 0 0 v voltage range full range 0 to 0 to full range to 1.7 to 1.7 i oh = ? 20 a 25 c 2.98 2.98 v oh high-level output i oh = ? 75 a 25 c 2.9 2.9 v v oh high-level output voltage i oh = ? 75 a full range 2.8 2.8 v voltage i oh = ? 150 a 25 c 2.8 2.8 v ic = 1.5 v, i ol = 50 a 25 c 10 10 low-level output v ic = 1.5 v, i ol = 500 a 25 c 100 150 100 150 v ol low-level output voltage v ic = 1.5 v, i ol = 500 a full range 165 165 mv v ol voltage v ic = 1.5 v, i ol = 1 a 25 c 200 300 200 300 mv v ic = 1.5 v, i ol = 1 a full range 300 300 large-signal differential v ic = 1.5 v, r l = 100 k ? ? 25 c 100 225 100 225 a vd large-signal differential voltage amplification v ic = 1.5 v, v o = 1 v to 2 v r l = 100 k ? ? full range 10 10 v/mv a vd voltage amplification v o = 1 v to 2 v r l = 1 m ? ? 25 c 800 800 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, n package 25 c 8 8 pf z o closed-loop output impedance f = 25 khz, a v = 10 25 c 220 220 ? cmrr common-mode v ic = 0 to 1.7 v, v o = 1.5 v, 25 c 65 75 65 77 db cmrr common-mode rejection ratio v ic = 0 to 1.7 v, r s = 50 ? v o = 1.5 v, full range 60 60 db k svr supply voltage rejection ratio v dd = 2.7 v to 8 v, 25 c 80 95 80 100 db k svr rejection ratio ( ? v dd / ? v io ) v dd = 2.7 v to 8 v, v ic = v dd /2, no load full range 80 80 db ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 1.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos185d ? february 1997 ? revised august 2006 19 post office box 655303 ? dallas, texas 75265 tlv2254q, and tlv2254m electrical characteristics at specified free-air temperature, v dd = 3 v (unless otherwise noted) (continued) parameter test conditions t a ? tlv2254q, tlv2254m tlv2254aq, tlv2254am unit parameter test conditions t a ? min typ max min typ max unit i dd supply current v o = 1.5 v, no load 25 c 135 250 135 250 a i dd supply current (four amplifiers) v o = 1.5 v, no load full range 300 300 a ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. tlv2254q, and tlv2254m operating characteristics at specified free-air temperature, v dd = 3 v parameter test conditions t a ? tlv2254q, tlv2254m tlv2254aq, tlv2254am unit parameter test conditions t a ? min typ max min typ max unit sr slew rate at unity gain v o = 0.5 v to 1.7 v, r l = 100 k ? ? , 25 c 0.07 0.1 0.07 0.1 v/ s sr slew rate at unity gain r l = 100 k ? ? , c l = 100 pf ? full range 0.05 0.05 v/ s l c l = 100 pf ? full range 0.05 0.05 v n equivalent input noise voltage f = 10 hz 25 c 35 35 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 19 19 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.6 0.6 v v n(pp) peak-to-peak equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.1 1.1 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz gain-bandwidth product f = 1 khz, r l = 50 k ? ? , 25 c 0.187 0.187 mhz gain-bandwidth product r l = 50 k ? ? , c l = 100 pf ? 25 c 0.187 0.187 mhz b om maximum output-swing v o(pp) = 1 v, a v = 1, ? 25 c 60 60 khz b om maximum output-swing bandwidth a v = 1, r l = 50 k ? ? , c l = 100 pf ? 25 c 60 60 khz m phase margin at unity gain r l = 50 k ? ? , ? 25 c 63 63 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 15 15 db ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 1.5 v
? slos185d ? february 1997 ? revised august 2006 20 post office box 655303 ? dallas, texas 75265 tlv2254q, and tlv2254m electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) parameter test conditions t a ? tlv2254q, tlv2254m tlv2254aq, tlv2254am unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 200 1500 200 850 v v io input offset voltage full range 1750 1000 v  vio temperature coefficient 25 c 0.5 0.5 v/ c  vio temperature coefficient of input offset voltage 25 c to 125 c 0.5 0.5 v/ c input offset voltage long-term drift (see note 4) v dd = 2.5 v , v o = 0, v ic = 0, r s = 50 ? 25 c 0.003 0.003 v/mo i io input offset current 25 c 0.5 60 0.5 60 pa i io input offset current 125 c 1000 1000 pa i ib input bias current 25 c 1 60 1 60 pa i ib input bias current 125 c 1000 1000 pa 0 ?0.3 0 ?0.3 25 c 0 to ?0.3 to 0 to ?0.3 to v icr common-mode input | v io | 5 mv, r s = 50 ? | v io | 5 mv, r s = 50 ? 0 0 v voltage range full range 0 to 0 to full range to 3.5 to 3.5 i oh = ? 20 a 25 c 4.98 4.98 v oh high-level output i oh = ? 75 a 25 c 4.9 4.94 4.9 4.94 v v oh high-level output voltage i oh = ? 75 a full range 4.8 4.8 v voltage i oh = ? 150 a 25 c 4.8 4.88 4.8 4.88 v ic = 2.5 v, i ol = 50 a 25 c 0.01 0.01 low-level output v ic = 2.5 v, i ol = 500 a 25 c 0.09 0.15 0.09 0.15 v ol low-level output voltage v ic = 2.5 v, i ol = 500 a full range 0.15 0.15 v v ol voltage v ic = 2.5 v, i ol = 1 a 25 c 0.2 0.3 0.2 0.3 v v ic = 2.5 v, i ol = 1 a full range 0.3 0.3 large-signal differential v ic = 2.5 v, r l = 100 k ? ? 25 c 100 350 100 350 a vd large-signal differentia l voltage amplification v ic = 2.5 v, v o = 1 v to 4 v r l = 100 k ? ? full range 10 10 v/mv a vd voltage amplification v o = 1 v to 4 v r l = 1 m ? ? 25 c 1700 1700 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, n package 25 c 8 8 pf z o closed-loop output impedance f = 25 khz, a v = 10 25 c 200 200 ? cmrr common-mode v ic = 0 to 2.7 v, v o = 2.5 v, 25 c 70 83 70 83 db cmrr common-mode rejection ratio v ic = 0 to 2.7 v, r s = 50 ? v o = 2.5 v, full range 70 70 db k svr supply voltage rejection ratio v dd = 4.4 v to 8 v, 25 c 80 95 80 95 db k svr rejection ratio ( ? v dd / ? v io ) v dd = 4.4 v to 8 v, v ic = v dd /2, no load full range 80 80 db ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 2.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? slos185d ? february 1997 ? revised august 2006 21 post office box 655303 ? dallas, texas 75265 tlv2254q, and tlv2254m electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) (continued) parameter test conditions t a ? tlv2254q, tlv2254m tlv2254aq, tlv2254am unit parameter test conditions t a ? min typ max min typ max unit i dd supply current v o = 2.5 v, no load 25 c 140 250 140 250 a i dd supply current (four amplifiers) v o = 2.5 v, no load full range 300 300 a ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. tlv2254q, and tlv2254m operating characteristics at specified free-air temperature, v dd = 5 v parameter test conditions t a ? tlv2254q, tlv2254m tlv2254aq, tlv2254am unit parameter test conditions t a ? min typ max min typ max unit slew rate at unity v o = 0.5 v to 3.5 v, r l = 100 k ? ? , 25 c 0.07 0.12 0.07 0.12 sr slew rate at unity gain v o = 0.5 v to 3.5 v, c l = 100 pf ? r l = 100 k ? ? , full 0.05 0.05 v/ s sr gain c l = 100 pf ? full range 0.05 0.05 v/ s v n equivalent input f = 10 hz 25 c 36 36 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 19 19 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.7 0.7 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.1 1.1 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz thd + n total harmonic distortion plus v o = 0.5 v to 2.5 v, f = 20 khz, a v = 1 25 c 0.2% 0.2% thd + n distortion plus noise o f = 20 khz, r l = 50 k ? ? a v = 10 25 c 1% 1% gain-bandwidth f = 50 khz, r l = 50 k ? ? , 25 c 0.2 0.2 mhz gain-bandwidth product f = 50 khz, c l = 100 pf ? r l = 50 k ? ? , 25 c 0.2 0.2 mhz b om maximum output- v o(pp) = 2 v, ? a v = 1, ? 25 c 30 30 khz b om maximum output- swing bandwidth v o(pp) = 2 v, r l = 50 k ? ? , a v = 1, c l = 100 pf ? 25 c 30 30 khz m phase margin at unity gain r l = 50 k ? ? , c l = 100 pf ? 25 c 63 63 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 15 15 db ? full range is ? 40 c to 125 c for q level part, ? 55 c to 125 c for m level part. ? referenced to 2.5 v
? slos185d ? february 1997 ? revised august 2006 22 post office box 655303 ? dallas, texas 75265 typical characteristics table of graphs figure v io input offset voltage distribution vs common-mode voltage 2 ? 5 6, 7 vio input offset voltage temperature coefficient distribution 8 ? 11 i ib /i io input bias and input offset currents vs free-air temperature 12 v i input voltage vs supply voltage vs free-air temperature 13 14 v oh high-level output voltage vs high-level output current 15, 18 v ol low-level output voltage vs low-level output current 16, 17, 19 v o(pp) maximum peak-to-peak output voltage vs frequency 20 i os short-circuit output current vs supply voltage vs free-air temperature 21 22 v id differential input voltage vs output voltage 23, 24 a vd differential voltage amplification vs load resistance 25 a vd large-signal differential voltage amplification vs frequency vs free-air temperature 26, 27 28, 29 z o output impedance vs frequency 30, 31 cmrr common-mode rejection ratio vs frequency vs free-air temperature 32 33 k svr supply-voltage rejection ratio vs frequency vs free-air temperature 34, 35 36 i dd supply current vs supply voltage 37, 38 sr slew rate vs load capacitance vs free-air temperature 39 40 v o inverting large-signal pulse response 41, 42 v o voltage-follower large-signal pulse response 43, 44 v o inverting small-signal pulse response 45, 46 v o voltage-follower small-signal pulse response 47, 48 v n equivalent input noise voltage vs frequency 49, 50 input noise voltage over a 10-second period 51 integrated noise voltage vs frequency 52 thd + n total harmonic distortion plus noise vs frequency 53 gain-bandwidth product vs supply voltage vs free-air temperature 54 55 m phase margin vs frequency vs load capacitance 26, 27 56 gain margin vs load capacitance 57 b 1 unity-gain bandwidth vs load capacitance 58 overestimation of phase margin vs load capacitance 59
? slos185d ? february 1997 ? revised august 2006 23 post office box 655303 ? dallas, texas 75265 typical characteristics figure 2 precentage of amplifiers ? % distribution of tlv2252 input offset voltage v io ? input offset voltage ? mv 10 5 0 20 15 ?1.6 ?0.8 0 0.8 1.6 1020 amplifiers from 1 wafer lot v dd = 1.5 v t a = 25 c figure 3 precentage of amplifiers ? % distribution of tlv2252 input offset voltage v io ? input offset voltage ? mv 10 5 0 20 15 ?1.6 ?0.8 0 0.8 1.6 1020 amplifiers from 1 wafer lot v dd = 2.5 v t a = 25 c figure 4 percentage of amplifiers ? % distribution of tlv2254 input offset voltage v io ? input offset voltage ? mv 15 10 5 0 20 35 ?1.6 ?0.8 0 0.8 1.6 25 30 682 amplifiers from 1 wafer lot v dd = 1.5 v t a = 25 c figure 5 percentage of amplifiers ? % distribution of tlv2254 input offset voltage v io ? input offset voltage ? mv 20 10 5 0 25 35 ?1.6 ?0.8 0 0.8 1.6 682 amplifiers from 1 wafer lot v dd = 2.5 v t a = 25 c 15 30
? slos185d ? february 1997 ? revised august 2006 24 post office box 655303 ? dallas, texas 75265 typical characteristics figure 6 ? input offset voltage ? mv input offset voltage ? vs common-mode input voltage ? t a = 25 c 3 figure 7 ? input offset voltage ? mv input offset voltage ? vs common-mode input voltage ? t a = 25 c figure 8 distribution of tlv2252 input offset voltage temperature coefficient ? percentage of amplifiers ? % vio ? temperature coefficient ? v/ c 15 10 5 0 20 25 ?2 ?1 0 1 2 62 amplifiers from 1 wafer lot v dd = 1.5 v p package t a = 25 c to 85 c figure 9 distribution of tlv2252 input offset voltage temperature coefficient ? percentage of amplifiers ? % vio ? temperature coefficient ? v/ c 15 10 5 0 20 25 ?2 ?1 0 1 2 62 amplifiers from 1 wafer lot v dd = 2.5 v p package t a = 25 c to 85 c ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos185d ? february 1997 ? revised august 2006 25 post office box 655303 ? dallas, texas 75265 typical characteristics figure 10 distribution of tlv2254 input offset voltage temperature coefficient percentage of amplifiers ? % vio ? temperature coefficient of input offset voltage ? v/ c 10 5 0 20 15 25 ?2 ?1 0 1 2 62 amplifiers from 1 wafer lot v dd = 1.5 v p package t a = 25 c to 85 c figure 11 distribution of tlv2254 input offset voltage temperature coefficient percentage of amplifiers ? % vio ? temperature coefficient of input offset voltage ? v/ c 10 5 0 20 15 25 ?2 ?1 0 1 2 62 amplifiers from 1 wafer lot v dd = 2.5 v p package t a = 25 c to 85 c figure 12 iib and iio ? input bias and input offset currents ? pa input bias and input offset currents ? vs free-air temperature i ib i io t a ? free-air temperature ? c 20 15 25 45 65 25 30 35 85 i ib i io 10 5 0 105 125 v dd = 2.5 v v ic = 0 v o = 0 r s = 50 ? figure 13 0 2 1 1.5 2 2.5 ? input voltage ? v 1 0.5 1.5 input voltage vs supply voltage 2.5 3 3.5 4 ?0.5 ?1 ?1.5 ?2 ?2.5 r s = 50 ? t a = 25 c | v io | 5 mv | ? supply voltage ? v ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices.
? slos185d ? february 1997 ? revised august 2006 26 post office box 655303 ? dallas, texas 75265 typical characteristics figure 14 ? input voltage ? v input voltage ?? vs free-air temperature c 2 1 0 3 4 5 ?1 ?55 ?35 ?15 5 25 45 65 85 | v io | 5 mv v dd = 5 v 105 125 figure 15 ? high-level output voltage ? v high-level output voltage ?? vs high-level output current a 2 1.5 1 0 0 200 400 2.5 3 600 800 v dd = 3 v t a = ? 40 c t a = 25 c t a = 85 c 0.5 t a = 125 c figure 16 0.6 0.4 0.2 0 0123 ? low-level output voltage ? v 0.8 1 low-level output voltage ? vs low-level output current 1.2 45 c v ic = 0 v ic = 0.75 v v ic = 1.5 v figure 17 ? low-level output voltage ? v low-level output voltage ?? vs low-level output current c t a = ? 40 c t a = 25 c t a = 125 c v dd = 3 v v ic = 1.5 v ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos185d ? february 1997 ? revised august 2006 27 post office box 655303 ? dallas, texas 75265 typical characteristics figure 18 ? high-level output voltage ? v high-level output voltage ?? vs high-level output current a 3 2 1 0 0 200 400 4 5 600 800 v dd = 5 v t a = ? 40 c t a = 25 c t a = 125 c t a = 85 c figure 19 ? low-level output voltage ? v low-level output voltage ?? vs low-level output current c t a = 85 c t a = 25 c t a = 125 c figure 20 ? maximum peak-to-peak output voltage ? v f ? frequency ? hz maximum peak-to-peak output voltage ? vs frequency ? t a = 25 c v dd = 5 v v dd = 3 v figure 21 ? short-circuit output current ? ma short-circuit output current vs supply voltage i os v dd ? supply voltage ? v 5 3 1 234 5 7 8 10 678 9 6 4 2 0 ?1 v id = ? 100 mv v id = 100 mv v o = v dd /2 t a = 25 c v ic = v dd /2 ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos185d ? february 1997 ? revised august 2006 28 post office box 655303 ? dallas, texas 75265 typical characteristics figure 22 ? short-circuit output current ? ma short-circuit output current ? vs free-air temperature i os t a ? free-air temperature ? c 11 10 9 8 7 6 5 4 3 2 1 0 ?1 ?50 ?25 0 25 50 75 100 v id = ? 100 mv v id = 100 mv v o = 2.5 v v dd = 5 v ?75 125 figure 23 0 800 0 0.5 1 1.5 ? differential input voltage ? 400 200 600 differential input voltage ? vs output voltage 1000 2 2.5 3 ?200 ?400 ?600 ?800 ?1000 v dd = 3 v r i = 50 k ? v ic = 1.5 v t a = 25 c v id v v o ? output voltage ? v figure 24 0 800 01 3 ? differential input voltage ? 400 200 600 differential input voltage ? vs output voltage 1000 245 ?200 ?400 ?600 ?800 ?1000 v id v v o ? output voltage ? v v dd = 5 v v ic = 2.5 v r l = 50 k ? t a = 25 c figure 25 differential voltage amplification ?? vs load resistance r l ? load resistance ? k ? ? differential voltage amplification ? v/mv c v dd = 5 v v dd = 3 v ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos185d ? february 1997 ? revised august 2006 29 post office box 655303 ? dallas, texas 75265 typical characteristics om ? phase margin m f ? frequency ? hz large-signal differential voltage ? amplification and phase margin vs frequency avd ? large-signal differential 135 90 45 0 ?45 ?90 gain v dd = 5 v r l = 50 k ? c l = 100 pf t a = 25 c phase margin figure 26 om ? phase margin m f ? frequency ? hz large-signal differential voltage ? amplification and phase margin vs frequency avd ? large-signal differential 135 90 45 0 ?45 ?90 gain v dd = 3 v r l = 50 k ? c l = 100 pf t a = 25 c phase margin figure 27 ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos185d ? february 1997 ? revised august 2006 30 post office box 655303 ? dallas, texas 75265 typical characteristics figure 28 large-signal differential ?? voltage amplification vs free-air temperature t a ? free-air temperature ? c ? large-signal differential voltage a vd amplification ? v/mv ?50 ?25 0 25 50 75 100 r l = 50 k ? r l = 1 m ? 10 4 10 3 10 2 10 1 v dd = 3 v v ic = 1.5 v v o = 0.5 v to 2.5 v ?75 125 figure 29 large-signal differential ?? voltage amplification vs free-air temperature t a ? free-air temperature ? c ? large-signal differential voltage a vd amplification ? v/mv ?50 ?25 0 25 50 75 100 125 v dd = 5 v v ic = 2.5 v v o = 1 v to 4 v r l = 50 k ? r l = 1 m ? 10 4 10 3 10 2 10 1 ?75 figure 30 ? output impedance ? f? frequency ? hz output impedance ? vs frequency ? z o 10 1 0.1 1000 100 10 2 10 3 10 4 10 5 10 6 a v = 100 a v = 10 a v = 1 v dd = 3 v t a = 25 c figure 31 ? output impedance ? f? frequency ? hz output impedance ? vs frequency ? z o 10 1 0.1 1000 100 10 2 10 3 10 4 10 5 10 6 a v = 100 a v = 10 a v = 1 v dd = 5 v t a = 25 c ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos185d ? february 1997 ? revised august 2006 31 post office box 655303 ? dallas, texas 75265 typical characteristics figure 32 cmrr ? common-mode rejection ratio ? db f ? frequency ? hz common-mode rejection ratio ? vs frequency 80 40 20 0 100 60 10 1 10 2 10 3 10 4 10 5 10 6 v dd = 5 v v ic = 2.5 v v dd = 3 v v ic = 1.5 v t a = 25 c figure 33 cmmr ? common-mode rejection ratio ? db common-mode rejection ratio ?? vs free-air temperature t a ? free-air temperature ? c 86 82 80 92 84 90 88 94 v dd = 5 v v dd = 3 v ? 50 ? 25 0 25 50 75 100 ? 75 125 figure 34 ? supply-voltage rejection ratio ? db f ? frequency ? hz supply-voltage rejection ratio ? vs frequency c figure 35 ? supply-voltage rejection ratio ? db f ? frequency ? hz supply-voltage rejection ratio ? vs frequency c k svr ? k svr + ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos185d ? february 1997 ? revised august 2006 32 post office box 655303 ? dallas, texas 75265 typical characteristics figure 36 ? supply-voltage rejection ratio ? db supply-voltage rejection ratio ? vs free-air temperature c 100 95 90 105 110 ?50 ?25 0 25 50 75 100 v dd = 2.7 v to 8 v v ic = v o = v dd /2 125 ?75 figure 37 ? supply current ? a i dd 60 40 20 0 012345 80 100 120 678 v dd ? supply voltage ? v v o = 0 no load t a = 25 c t a = 85 c t a = ? 40 c tlv2252 supply current ? vs supply voltage figure 38 ? supply current ? a i dd 120 80 40 0 012345 160 200 240 678 | v dd | ? supply voltage ? v v o = 0 no load t a = 25 c t a = 85 c t a = ? 40 c tlv2254 supply current ? vs supply voltage figure 39 sr ? slew rate ? slew rate ? vs load capacitance c l ? load capacitance ? pf s v/ 0.16 0.08 0.04 0 0.2 0.12 10 1 10 2 10 3 10 4 v dd = 5 v a v = ? 1 t a = 25 c sr ? 0.18 0.14 0.1 0.06 0.02 sr + ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos185d ? february 1997 ? revised august 2006 33 post office box 655303 ? dallas, texas 75265 typical characteristics figure 40 sr ? slew rate ? slew rate ?? vs free-air temperature s v/ t a ? free-air temperature ? c 0.08 0.04 0 0.12 0.16 0.2 ?50 ?25 0 25 50 75 100 sr ? sr + v dd = 5 v r l = 50 k ? c l = 100 pf a v = 1 ?75 125 figure 41 ? output voltage ? v inverting large-signal pulse response ? v o t ? time ? s 1.5 1 0.5 0 0 102030405060 2 2.5 3 70 80 90 100 a v = ? 1 t a = 25 c v dd = 3 v r l = 50 k ? c l = 100 pf figure 42 inverting large-signal pulse response ? t ? time ? s ? output voltage ? v v o 2 1 0 0 102030405060 3 4 5 70 80 90 100 v dd = 5 v r l = 50 k ? c l = 100 pf a v = ? 1 t a = 25 c figure 43 voltage-follower large-signal pulse response ? ? output voltage ? v v o t ? time ? s 1.5 1 0.5 0 0 1020 30405060 2 2.5 3 70 80 90 100 a v = 1 t a = 25 c v dd = 3 v r l = 50 k ? c l = 100 pf ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos185d ? february 1997 ? revised august 2006 34 post office box 655303 ? dallas, texas 75265 typical characteristics figure 44 voltage-follower large-signal pulse response ? ? output voltage ? v v o t ? time ? s 2 1 0 0 102030405060 3 4 5 70 80 90 100 v dd = 5 v r l = 50 k ? c l = 100 pf a v = 1 t a = 25 c figure 45 inverting small-signal pulse response ? ? output voltage ? v v o t ? time ? s 0.7 0.65 0.9 0.6 0102030 0.8 0.75 0.85 0.95 40 50 v dd = 3 v r l = 50 k ? c l = 100 pf a v = ? 1 t a = 25 c figure 46 vo ? output voltage ? v inverting small-signal pulse response ? v o t ? time ? s 2.5 2.45 2.4 0102030 2.55 2.6 2.65 40 50 v dd = 5 v r l = 50 k ? c l = 100 pf a v = ? 1 t a = 25 c figure 47 voltage-follower small-signal pulse response ? vo ? output voltage ? v v o t ? time ? s 0.8 0.75 0.6 0102030 0.85 0.9 0.95 40 50 0.7 0.65 v dd = 3 v r l = 50 k ? c l = 100 pf a v = 1 t a = 25 c ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos185d ? february 1997 ? revised august 2006 35 post office box 655303 ? dallas, texas 75265 typical characteristics figure 48 voltage-follower small-signal pulse response ? vo ? output voltage ? v v o t ? time ? s 2.5 2.45 2.4 0102030 2.55 2.6 2.65 40 50 v dd = 5 v r l = 50 k ? c l = 100 pf a v = 1 t a = 25 c figure 49 ? equivalent input noise voltage ? f ? frequency ? hz equivalent input noise voltage ? vs frequency v n nv/ hz 40 30 20 0 60 50 10 10 1 10 2 10 3 10 4 v dd = 3 v r s = 20 ? t a = 25 c figure 50 ? equivalent input noise voltage ? f ? frequency ? hz equivalent input noise voltage ? vs frequency v n nv/ hz 40 20 10 0 60 30 50 10 1 10 2 10 3 10 4 v dd = 5 v r s = 20 ? t a = 25 c figure 51 noise voltage ? nv t ? time ? s input noise voltage over a 10-second period ? 0246 0 750 1000 810 500 ?250 ?500 ?750 ?1000 250 v dd = 5 v f = 0.1 hz to 10 hz t a = 25 c ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos185d ? february 1997 ? revised august 2006 36 post office box 655303 ? dallas, texas 75265 typical characteristics figure 52 integrated noise voltage ? f ? frequency ? hz integrated noise voltage ? vs frequency v 0.1 1 10 100 110 1 10 2 10 3 10 4 10 5 calculated using ideal pass-band filter low frequency = 1 hz t a = 25 c figure 53 thd + n ? total harmonic distortion plus noise ? % f ? frequency ? hz total harmonic distortion plus noise ? vs frequency 0.01 1 0.001 10 1 10 2 10 3 10 4 10 5 a v = 10 a v = 1 v dd = 5 v r l = 50 k ? t a = 25 c 0.1 a v = 100 figure 54 gain-bandwidth product ? khz gain-bandwidth product vs supply voltage v dd ? supply voltage ? v 200 190 180 170 023 5 210 220 78 146 figure 55 gain-bandwidth product ? khz gain-bandwidth product ?? vs free-air temperature t a ? free-air temperature ? c 220 140 100 260 300 ?50 ?25 0 25 50 100 75 180 v dd = 5 v f = 10 khz r l = 50 khz c l = 100 pf 125 ?75 ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos185d ? february 1997 ? revised august 2006 37 post office box 655303 ? dallas, texas 75265 typical characteristics figure 56 om ? phase margin phase margin vs load capacitance c l ? load capacitance ? pf m 10 1 10 2 10 3 10 4 75 60 45 30 15 0 r null = 200 ? r null = 500 ? r null = 50 ? r null = 0 t a = 25 c r null = 100 ? r null = 10 ? 50 k ? 50 k ? v dd ? v dd + r null c l v i + ? figure 57 gain margin ? db gain margin vs load capacitance c l ? load capacitance ? pf 20 10 5 0 15 10 1 10 2 10 3 10 5 r null = 100 ? t a = 25 c r null = 50 ? 10 4 r null = 500 ? r null = 200 ? r null = 0 r null = 10 ? figure 58 ? unity-gain bandwidth ? khz unity-gain bandwidth vs load capacitance c l ? load capacitance ? pf c ? see application information figure 59 overestimation of phase margin overestimation of phase margin ? vs load capacitance c l ? load capacitance ? pf 15 10 5 0 20 25 10 1 10 2 10 3 10 4 10 5 t a = 25 c r null = 100 ? r null = 50 ? r null = 10 ? r null = 500 ? r null = 200 ? ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for all curves where v dd = 5 v, all loads are referenced to 2.5 v. for all curves where v dd = 3 v, all loads are referenced to 1.5 v.
? slos185d ? february 1997 ? revised august 2006 38 post office box 655303 ? dallas, texas 75265 application information driving large capacitive loads the tlv2252 is designed to drive larger capacitive loads than most cmos operational amplifiers. figure 56 and figure 57 illustrate its ability to drive loads up to 1000 pf while maintaining good gain and phase margins (r null = 0). a smaller series resistor (r null ) at the output of the device (see figure 60) improves the gain and phase margins when driving large capacitive loads. figure 55 and figure 56 show the effects of adding series resistances of 10 ? , 50 ? , 100 ? , 200 ? , and 500 ? . the addition of this series resistor has two effects: the first adds a zero to the transfer function and the second reduces the frequency of the pole associated with the output load in the transfer function. the zero introduced to the transfer function is equal to the series resistance times the load capacitance. to calculate the improvement in phase margin, equation 1 can be used. ? m1  tan ?1  2 ugb w r null c l  ? m1  improvement in phase margin ugbw  unity-gain bandwidth frequency r null  output series resistance c l  load capacitance (1) where : the unity-gain bandwidth (ugbw) frequency decreases as the capacitive load increases (see figure 58). to use equation 1, ugbw must be approximated from figure 58. using equation 1 alone overestimates the improvement in phase margin as illustrated in figure 59. the overestimation is caused by the decrease in the frequency of the pole associated with the load, providing additional phase shift and reducing the overall improvement in phase margin. using figure 60, with equation 1 enables the designer to choose the appropriate output series resistance to optimize the design of circuits driving large capacitance loads. 50 k ? 50 k ? v dd ? / gnd v dd + r null c l v i + ? figure 60. series-resistance circuit
? slos185d ? february 1997 ? revised august 2006 39 post office box 655303 ? dallas, texas 75265 application information macromodel information macromodel information provided was derived using microsim parts ? , the model generation software used with microsim pspice ? . the boyle macromodel (see note 5) and subcircuit in figure 61 are generated using the tlv2252 typical electrical and operating characteristics at t a = 25 c. using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  maximum positive output voltage swing  maximum negative output voltage swing  slew rate  quiescent power dissipation  input bias current  open-loop voltage amplification  unity-gain frequency  common-mode rejection ratio  phase margin  dc output resistance  ac output resistance  short-circuit output current limit note 5: g. r. boyle, b. m. cohn, d. o. pederson, and j. e. solomon, ?macromodeling of integrated circuit operational amplifiers,? ieee journal of solid-state circuits, sc-9, 353 (1974). out + ? + ? + ? + ? + ? + ? + ? + ? + ? .subckt tlv225x 1 2 3 4 5 c1 11 12 6.369e?12 c2 6 7 25.00e?12 dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 43dx egnd 99 0 poly (2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly (5) vb vc ve vlp + vln 0 57.62e6 ?60e6 60e6 60e6 ?60e6 ga 6 0 11 12 26.86e?6 gcm 0 6 10 99 2.686e?9 iss 3 10 dc 3.1e?6 hlim 90 0 vlim 1k j1 11 2 10 jx j2 12 1 10 jx r2 6 9 100.0e3 rd1 60 11 37.23e3 rd2 60 12 37.23e3 r01 8 5 84 r02 7 99 84 rp 3 4 71.43e3 rss 10 99 64.52e6 vad 60 4 ?.5 vb 9 0 dc 0 vc 3 53 dc .605 ve 54 4 dc .605 vlim 7 8 dc 0 vlp 91 0 dc ?0.235 vln 0 92 dc 7.5 .model dx d (is=800.0e?18) .model jx pjf (is=500.0e?15 beta=139e?6 + vto=?.05) .ends v cc + rp in ? 2 in + 1 v cc ? vad rd1 11 j1 j2 10 rss iss 3 12 rd2 60 ve 54 de dp vc dc 4 c1 53 r2 6 9 egnd vb fb c2 gcm ga vlim 8 5 ro1 ro2 hlim 90 dlp 91 dln 92 vln vlp 99 7 figure 61. boyle macromodel and subcircuit pspice and parts are trademarks of microsim corporation.
packaging information orderable device status (1) package type package drawing pins package qty eco plan (2) lead/ball finish msl peak temp (3) 5962-9550401q2a active lccc fk 20 1 tbd post-plate n / a for pkg type 5962-9550401qha active cfp u 10 1 tbd a42 snpb n / a for pkg type 5962-9550401qpa active cdip jg 8 1 tbd a42 snpb n / a for pkg type 5962-9550403q2a active lccc fk 20 1 tbd post-plate n / a for pkg type 5962-9550403qha active cfp u 10 1 tbd a42 snpb n / a for pkg type 5962-9550403qpa active cdip jg 8 1 tbd a42 snpb n / a for pkg type 5962-9566601q2a active lccc fk 20 1 tbd post-plate n / a for pkg type 5962-9566601qha active cfp u 10 1 tbd a42 snpb n / a for pkg type 5962-9566601qpa active cdip jg 8 1 tbd a42 snpb n / a for pkg type 5962-9566602q2a active lccc fk 20 1 tbd post-plate n / a for pkg type 5962-9566602qca active cdip j 14 1 tbd a42 snpb n / a for pkg type 5962-9566602qda active cfp w 14 1 tbd a42 snpb n / a for pkg type 5962-9566603q2a active lccc fk 20 1 tbd post-plate n / a for pkg type 5962-9566603qha active cfp u 10 1 tbd a42 snpb n / a for pkg type 5962-9566603qpa active cdip jg 8 1 tbd a42 snpb n / a for pkg type 5962-9566604q2a active lccc fk 20 1 tbd post-plate n / a for pkg type 5962-9566604qca active cdip j 14 1 tbd a42 snpb n / a for pkg type 5962-9566604qda active cfp w 14 1 tbd a42 snpb n / a for pkg type tlv2252aid active soic d 8 75 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2252aidg4 active soic d 8 75 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2252aidr active soic d 8 2500 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2252aidrg4 active soic d 8 2500 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2252aip active pdip p 8 50 pb-free (rohs) cu nipdau n / a for pkg type tlv2252aipe4 active pdip p 8 50 pb-free (rohs) cu nipdau n / a for pkg type tlv2252aipw active tssop pw 8 150 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2252aipwg4 active tssop pw 8 150 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2252aipwle obsolete tssop pw 8 tbd call ti call ti tlv2252aipwr active tssop pw 8 2000 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2252aipwrg4 active tssop pw 8 2000 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2252amfkb active lccc fk 20 1 tbd post-plate n / a for pkg type tlv2252amjgb active cdip jg 8 1 tbd a42 snpb n / a for pkg type tlv2252aqd active soic d 8 75 pb-free (rohs) cu nipdau level-2-250c-1 year/ level-1-235c-unlim tlv2252aqdr active soic d 8 2500 pb-free (rohs) cu nipdau level-2-250c-1 year/ level-1-235c-unlim tlv2252cp active pdip p 8 tbd call ti call ti package option addendum www.ti.com 6-dec-2006 addendum-page 1
orderable device status (1) package type package drawing pins package qty eco plan (2) lead/ball finish msl peak temp (3) tlv2252id active soic d 8 75 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2252idg4 active soic d 8 75 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2252idr active soic d 8 2500 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2252idrg4 active soic d 8 2500 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2252ip active pdip p 8 50 pb-free (rohs) cu nipdau n / a for pkg type tlv2252ipe4 active pdip p 8 50 pb-free (rohs) cu nipdau n / a for pkg type tlv2252mfkb active lccc fk 20 1 tbd post-plate n / a for pkg type tlv2252mjgb active cdip jg 8 1 tbd a42 snpb n / a for pkg type tlv2252mub active cfp u 10 1 tbd a42 snpb n / a for pkg type tlv2252qd active soic d 8 75 tbd cu nipdau level-1-220c-unlim tlv2252qdr active soic d 8 2500 tbd call ti call ti tlv2254aid active soic d 14 50 green (rohs & no sb/br) call ti level-1-260c-unlim tlv2254aidg4 active soic d 14 50 green (rohs & no sb/br) call ti level-1-260c-unlim tlv2254aidr active soic d 14 2500 green (rohs & no sb/br) call ti level-1-260c-unlim tlv2254aidrg4 active soic d 14 2500 green (rohs & no sb/br) call ti level-1-260c-unlim tlv2254ain active pdip n 14 25 pb-free (rohs) cu nipdau n / a for pkg type tlv2254aine4 active pdip n 14 25 pb-free (rohs) cu nipdau n / a for pkg type tlv2254aipw active tssop pw 14 90 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2254aipwg4 active tssop pw 14 90 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2254aipwle obsolete tssop pw 14 tbd call ti call ti tlv2254aipwr active tssop pw 14 2000 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2254aipwrg4 active tssop pw 14 2000 green (rohs & no sb/br) cu nipdau level-1-260c-unlim tlv2254amfkb active lccc fk 20 1 tbd post-plate n / a for pkg type tlv2254amjb active cdip j 14 1 tbd a42 snpb n / a for pkg type tlv2254amwb active cfp w 14 1 tbd a42 snpb n / a for pkg type tlv2254aqd active soic d 14 50 tbd cu nipdau level-1-220c-unlim tlv2254aqdr active soic d 14 2500 tbd cu nipdau level-1-220c-unlim tlv2254id active soic d 14 50 green (rohs & no sb/br) call ti level-1-260c-unlim tlv2254idg4 active soic d 14 50 green (rohs & no sb/br) call ti level-1-260c-unlim tlv2254idr active soic d 14 2500 green (rohs & no sb/br) call ti level-1-260c-unlim package option addendum www.ti.com 6-dec-2006 addendum-page 2
orderable device status (1) package type package drawing pins package qty eco plan (2) lead/ball finish msl peak temp (3) tlv2254idrg4 active soic d 14 2500 green (rohs & no sb/br) call ti level-1-260c-unlim tlv2254in active pdip n 14 25 pb-free (rohs) cu nipdau n / a for pkg type tlv2254ine4 active pdip n 14 25 pb-free (rohs) cu nipdau n / a for pkg type tlv2254mfkb active lccc fk 20 1 tbd post-plate n / a for pkg type tlv2254mjb active cdip j 14 1 tbd a42 snpb n / a for pkg type tlv2254mwb active cfp w 14 1 tbd a42 snpb n / a for pkg type tlv2254qd active soic d 14 50 tbd call ti call ti tlv2254qdr active soic d 14 2500 tbd call ti call ti tlv2262amfkb active lccc fk 20 1 tbd post-plate n / a for pkg type tlv2262amjgb active cdip jg 8 1 tbd a42 snpb n / a for pkg type tlv2262amub active cfp u 10 1 tbd a42 snpb n / a for pkg type TLV2262MFKB active lccc fk 20 1 tbd post-plate n / a for pkg type tlv2262mjgb active cdip jg 8 1 tbd a42 snpb n / a for pkg type tlv2262mub active cfp u 10 1 tbd a42 snpb n / a for pkg type (1) the marketing status values are defined as follows: active: product device recommended for new designs. lifebuy: ti has announced that the device will be discontinued, and a lifetime-buy period is in effect. nrnd: not recommended for new designs. device is in production to support existing customers, but ti does not recommend using this part in a new design. preview: device has been announced but is not in production. samples may or may not be available. obsolete: ti has discontinued the production of the device. (2) eco plan - the planned eco-friendly classification: pb-free (rohs), pb-free (rohs exempt), or green (rohs & no sb/br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. tbd: the pb-free/green conversion plan has not been defined. pb-free (rohs): ti's terms "lead-free" or "pb-free" mean semiconductor products that are compatible with the current rohs requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. where designed to be soldered at high temperatures, ti pb-free products are suitable for use in specified lead-free processes. pb-free (rohs exempt): this component has a rohs exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. the component is otherwise considered pb-free (rohs compatible) as defined above. green (rohs & no sb/br): ti defines "green" to mean pb-free (rohs compatible), and free of bromine (br) and antimony (sb) based flame retardants (br or sb do not exceed 0.1% by weight in homogeneous material) (3) msl, peak temp. -- the moisture sensitivity level rating according to the jedec industry standard classifications, and peak solder temperature. important information and disclaimer: the information provided on this page represents ti's knowledge and belief as of the date that it is provided. ti bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. efforts are underway to better integrate information from third parties. ti has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ti and ti suppliers consider certain information to be proprietary, and thus cas numbers and other limited information may not be available for release. in no event shall ti's liability arising out of such information exceed the total purchase price of the ti part(s) at issue in this document sold by ti to customer on an annual basis. package option addendum www.ti.com 6-dec-2006 addendum-page 3
mechanical data mcer001a january 1995 revised january 1997 post office box 655303 ? dallas, texas 75265 jg (r-gdip-t8) ceramic dual-in-line 0.310 (7,87) 0.290 (7,37) 0.014 (0,36) 0.008 (0,20) seating plane 4040107/c 08/96 5 4 0.065 (1,65) 0.045 (1,14) 8 1 0.020 (0,51) min 0.400 (10,16) 0.355 (9,00) 0.015 (0,38) 0.023 (0,58) 0.063 (1,60) 0.015 (0,38) 0.200 (5,08) max 0.130 (3,30) min 0.245 (6,22) 0.280 (7,11) 0.100 (2,54) 0 15 notes: a. all linear dimensions are in inches (millimeters). b. this drawing is subject to change without notice. c. this package can be hermetically sealed with a ceramic lid using glass frit. d. index point is provided on cap for terminal identification. e. falls within mil std 1835 gdip1-t8



mechanical data mlcc006b october 1996 post office box 655303 ? dallas, texas 75265 fk (s-cqcc-n**) leadless ceramic chip carrier 4040140 / d 10/96 28 terminal shown b 0.358 (9,09) max (11,63) 0.560 (14,22) 0.560 0.458 0.858 (21,8) 1.063 (27,0) (14,22) a no. of min max 0.358 0.660 0.761 0.458 0.342 (8,69) min (11,23) (16,26) 0.640 0.739 0.442 (9,09) (11,63) (16,76) 0.962 1.165 (23,83) 0.938 (28,99) 1.141 (24,43) (29,59) (19,32) (18,78) ** 20 28 52 44 68 84 0.020 (0,51) terminals 0.080 (2,03) 0.064 (1,63) (7,80) 0.307 (10,31) 0.406 (12,58) 0.495 (12,58) 0.495 (21,6) 0.850 (26,6) 1.047 0.045 (1,14) 0.045 (1,14) 0.035 (0,89) 0.035 (0,89) 0.010 (0,25) 12 13 14 15 16 18 17 11 10 8 9 7 5 4 3 2 0.020 (0,51) 0.010 (0,25) 6 1 28 26 27 19 21 b sq a sq 22 23 24 25 20 0.055 (1,40) 0.045 (1,14) 0.028 (0,71) 0.022 (0,54) 0.050 (1,27) notes: a. all linear dimensions are in inches (millimeters). b. this drawing is subject to change without notice. c. this package can be hermetically sealed with a metal lid. d. the terminals are gold plated. e. falls within jedec ms-004
mechanical data mpdi001a january 1995 revised june 1999 post office box 655303 ? dallas, texas 75265 p (r-pdip-t8) plastic dual-in-line 8 4 0.015 (0,38) gage plane 0.325 (8,26) 0.300 (7,62) 0.010 (0,25) nom max 0.430 (10,92) 4040082/d 05/98 0.200 (5,08) max 0.125 (3,18) min 5 0.355 (9,02) 0.020 (0,51) min 0.070 (1,78) max 0.240 (6,10) 0.260 (6,60) 0.400 (10,60) 1 0.015 (0,38) 0.021 (0,53) seating plane m 0.010 (0,25) 0.100 (2,54) notes: a. all linear dimensions are in inches (millimeters). b. this drawing is subject to change without notice. c. falls within jedec ms-001 for the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm



mechanical data mtss001c january 1995 revised february 1999 post office box 655303 ? dallas, texas 75265 pw (r-pdso-g**) plastic small-outline package 14 pins shown 0,65 m 0,10 0,10 0,25 0,50 0,75 0,15 nom gage plane 28 9,80 9,60 24 7,90 7,70 20 16 6,60 6,40 4040064/f 01/97 0,30 6,60 6,20 8 0,19 4,30 4,50 7 0,15 14 a 1 1,20 max 14 5,10 4,90 8 3,10 2,90 a max a min dim pins ** 0,05 4,90 5,10 seating plane 0 8 notes: a. all linear dimensions are in millimeters. b. this drawing is subject to change without notice. c. body dimensions do not include mold flash or protrusion not to exceed 0,15. d. falls within jedec mo-153
important notice texas instruments incorporated and its subsidiaries (ti) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. all products are sold subject to ti?s terms and conditions of sale supplied at the time of order acknowledgment. ti warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with ti?s standard warranty. testing and other quality control techniques are used to the extent ti deems necessary to support this warranty. except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. ti assumes no liability for applications assistance or customer product design. customers are responsible for their products and applications using ti components. to minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. ti does not warrant or represent that any license, either express or implied, is granted under any ti patent right, copyright, mask work right, or other ti intellectual property right relating to any combination, machine, or process in which ti products or services are used. information published by ti regarding third-party products or services does not constitute a license from ti to use such products or services or a warranty or endorsement thereof. use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from ti under the patents or other intellectual property of ti. reproduction of information in ti data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. reproduction of this information with alteration is an unfair and deceptive business practice. ti is not responsible or liable for such altered documentation. resale of ti products or services with statements different from or beyond the parameters stated by ti for that product or service voids all express and any implied warranties for the associated ti product or service and is an unfair and deceptive business practice. ti is not responsible or liable for any such statements. following are urls where you can obtain information on other texas instruments products and application solutions: products applications amplifiers amplifier.ti.com audio www.ti.com/audio data converters dataconverter.ti.com automotive www.ti.com/automotive dsp dsp.ti.com broadband www.ti.com/broadband interface interface.ti.com digital control www.ti.com/digitalcontrol logic logic.ti.com military www.ti.com/military power mgmt power.ti.com optical networking www.ti.com/opticalnetwork microcontrollers microcontroller.ti.com security www.ti.com/security low power wireless www.ti.com/lpw telephony www.ti.com/telephony video & imaging www.ti.com/video wireless www.ti.com/wireless mailing address: texas instruments post office box 655303 dallas, texas 75265 copyright ? 2006, texas instruments incorporated


▲Up To Search▲   

 
Price & Availability of TLV2262MFKB

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X